BLISS: A Billion scale Index using Iterative Re-partitioning [KDD'22]

Authors:

Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola

Presented by:

Kyung Jae Lee

March 05, 2025

Cluster-Based Indexes

- Assign vectors in dataset to clusters to construct index, and map query vector to small set of clusters likely to contain nearest neighbours
- Examples:
 - Locality Sensitive Hashing
 - K-Means Based (IVF)

The Curse of Clustering

- Real world data often follow a power-law relationship
- Hotspots and sparse regions in the embedding space

Unbalanced Clustering

- Overutilized clusters
- Higher latency

4

Balanced Clustering

ТО

- The "curse":
 - Similar vectors forced to split
 - Irrelevant vectors forced together

BLISS: BaLanced Index for Scalable Search

High-level learning process:

- 1. Train model to predict bucket assignment
- 2. Redistribute vectors according to model
- 3. Repeat

Trained model provides probabilistic assignment of vectors to buckets

BLISS Initialization

- Goal: uniform bucket sizes
- Random initial assignment into *B* buckets

BLISS Model Training

- Goal: train model to "score" bucket given a vector
- MLP with a single hidden layer
- Data: (x, \overline{y}) pairs
 - *x*: vector/query in dataset
 - \overline{y} : ground-truth 100 closest vectors to x (pre-computed)
- Cross-entropy loss over all buckets

BLISS Re-partitioning

- Use trained model to get "better" bucket assignments
- Re-assign each vector to least occupied of top *K* buckets
 - Incentivize load balancing

BLISS Querying

BLISS Configurations

- K: Load balancing parameter
 - ° 2 ~ 10
- *R*: Number of (independent) repetitions
 1 ~ 4
- B: Number of buckets in system
 - $\circ O(\sqrt{N})$
- m: How many buckets to probe

° 5 ~ 20

• Training scheme

BLISS+

Vector	Bucket	Position
V1	2	0
V2	1	1
V3	3	2
V4	2	3
V5	3	4
V6	1	5

BLISS+ F	Reordering
----------	------------

Vector	Bucket	Position
V2	1	0
V6	1	1
V1	2	2
V4	2	3
V3	3	4
V5	3	5

- Optimized for index size
 - Use only a single model
 - Reorder data and only store offsets
- 137M memory for 1B dataset
 - 6000x smaller than HNSW
 - 1500x smaller than FAISS-IVFFlat
 - 100x smaller than BLISS

Experiment Setup

- 1M, 100M, 1B scale datasets
- Use 1% of dataset for training data
- Hardware:
 - Server with 64 cores and 1.5 TB RAM (no GPU)
 - Only use 32 threads to batch queries

Experiments

- BLISS performs well compared to baselines
- No data points for BLISS for low latency regions
 - Presumably overhead in running inference on MLP
- BLISS also has a smaller index size

Experiments

BIGANN TI: 1B image dataset (BLISS doesn't work as well)

	QPS	Recall10@10	Index Size	Construction Time
BLISS	121	0.8443	15.5GB	1hr
BLISS+	344	0.658	137 MB	1.1hr
HNSW	909	0.8734	557GB	10hr
FAISS	243	0.8764	127GB	>5 days

Future Work

- How well does BLISS generalize to different data / react to updates?
- How long does it take to (re-)train the model?
- More rigorous experiments/analysis for billion-scale datasets
- Is the choice of neural network architecture and training setup optimal?

Thank you!

Questions?

Experiments

Yandex TI: 1B text-to-image dataset (BLISS outperforms due to nature of dataset)

	QPS	Recall10@10	Index Size	Construction Time
BLISS	110	0.568	15.5GB	1hr
BLISS+	384	0.434	137MB	1.3hr
HNSW	15	0.566	826GB	16hr
FAISS	4	0.4919	194GB	>5 days

Appendix: How is the "Curse of Clustering" Addressed?

- Main idea: bucket assignments are probabilistic and replicated across *R* independent trials
 - Functionally similar to assigning to multiple clusters
- Forced to split similar vectors
 - Lower chance of relevant clusters being lost with R repetitions
- Forced to group irrelevant vectors
 - Irrelevant vectors are filtered out by the threshold filter and not considered in the final candidate set

Appendix: Alternative Architectures?

- This ensemble-like approach using *R* models improves robustness and parallelizability, and helps with curse of clustering
- But the MLP may be too simple to effectively learn this (complex) vector to bucket association

Appendix: Modifications for XML

In XML, the labels are not vectors, so to perform re-partitioning, we need a way to map a label to a bucket

- 1. For every label, we find all the vectors x which have the label as a ground truth label
- 2. We compute and sum up f(x) for all such vectors x. This will give you a *B* dimensional vector that provides scores over buckets
- 3. Everything else is the same.

