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Cluster-Based Indexes

• Assign vectors in dataset to clusters to construct index, and map query 

vector to small set of clusters likely to contain nearest neighbours

• Examples:

⚬ Locality Sensitive Hashing

⚬ K-Means Based (IVF)
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The Curse of Clustering

• Real world data often 

follow a power-law 

relationship

• Hotspots and sparse 

regions in the embedding 

space
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Unbalanced Clustering

• Overutilized clusters

• Higher latency
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Balanced Clustering

• The “curse”:

⚬ Similar vectors forced 

to split

⚬ Irrelevant vectors 

forced together
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BLISS: BaLanced Index for Scalable Search

High-level learning process:

1. Train model to predict bucket assignment

2. Redistribute vectors according to model

3. Repeat

Trained model provides probabilistic assignment of vectors to buckets
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BLISS Initialization

• Goal: uniform bucket sizes

• Random initial assignment into 

𝐵 buckets
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BLISS Model Training

• Goal: train model to “score” 

bucket given a vector

• MLP with a single hidden layer

• Data: 𝑥, ത𝑦  pairs

⚬ 𝑥: vector/query in dataset

⚬ ത𝑦: ground-truth 100 closest 

vectors to 𝑥 (pre-computed)

• Cross-entropy loss over all 

buckets
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BLISS Re-partitioning

• Use trained model to get 

“better” bucket assignments

• Re-assign each vector to least 

occupied of top 𝐾 buckets

⚬ Incentivize load balancing
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BLISS Querying
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BLISS Configurations

• 𝐾: Load balancing parameter

⚬ 2 ~ 10

• 𝑅: Number of (independent) repetitions

⚬ 1 ~ 4

• 𝐵: Number of buckets in system

⚬ 𝑂 𝑁

• 𝑚: How many buckets to probe

⚬ 5 ~ 20

• Training scheme
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BLISS+

BLISS+ Reordering • Optimized for index size

⚬ Use only a single model

⚬ Reorder data and only 

store offsets

• 137M memory for 1B dataset

⚬ 6000x smaller than HNSW

⚬ 1500x smaller than FAISS-

IVFFlat

⚬ 100x smaller than BLISS
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Experiment Setup

• 1M, 100M, 1B scale datasets

• Use 1% of dataset for training data

• Hardware:

⚬ Server with 64 cores and 1.5 TB RAM (no GPU)

⚬ Only use 32 threads to batch queries
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Experiments

• BLISS performs well 

compared to baselines

• No data points for BLISS for 

low latency regions

⚬ Presumably overhead in 

running inference on MLP

• BLISS also has a smaller 

index size
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Experiments

15

QPS Recall10@10 Index Size Construction 

Time

BLISS 121 0.8443 15.5GB 1hr

BLISS+ 344 0.658 137MB 1.1hr

HNSW 909 0.8734 557GB 10hr

FAISS 243 0.8764 127GB >5 days

BIGANN TI: 1B image dataset (BLISS doesn’t work as well)



Future Work

• How well does BLISS generalize to different data / react to updates?

• How long does it take to (re-)train the model?

• More rigorous experiments/analysis for billion-scale datasets

• Is the choice of neural network architecture and training setup optimal?
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Thank you!

Questions?



Experiments
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QPS Recall10@10 Index Size Construction 

Time

BLISS 110 0.568 15.5GB 1hr

BLISS+ 384 0.434 137MB 1.3hr

HNSW 15 0.566 826GB 16hr

FAISS 4 0.4919 194GB >5 days

Yandex TI: 1B text-to-image dataset (BLISS outperforms due to nature of dataset) 



Appendix: How is the “Curse of Clustering” Addressed?

• Main idea: bucket assignments are probabilistic and replicated across 𝑅 independent trials

⚬ Functionally similar to assigning to multiple clusters

• Forced to split similar vectors

⚬ Lower chance of relevant clusters being lost with 𝑅 repetitions

• Forced to group irrelevant vectors

⚬ Irrelevant vectors are filtered out by the threshold filter and not considered in the final 

candidate set 
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Appendix: Alternative Architectures?

• This ensemble-like approach using 𝑅 models improves robustness and parallelizability, and 

helps with curse of clustering 

• But the MLP may be too simple to effectively learn this (complex) vector to bucket association
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Appendix: Modifications for XML

In XML, the labels are not vectors, so to perform re-partitioning, we need a 

way to map a label to a bucket

1. For every label, we find all the vectors 𝑥 which have the label as a 

ground truth label

2. We compute and sum up 𝑓(𝑥) for all such vectors 𝑥. This will give you 

a 𝐵 dimensional vector that provides scores over buckets

3. Everything else is the same.
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