
BLISS: A Billion scale Index using
Iterative Re-partitioning [KDD’22]

Authors:

Gaurav Gupta, Tharun Medini,

Anshumali Shrivastava, and Alexander

J. Smola

Presented by:

Kyung Jae Lee

March 05, 2025

Cluster-Based Indexes

• Assign vectors in dataset to clusters to construct index, and map query

vector to small set of clusters likely to contain nearest neighbours

• Examples:

⚬ Locality Sensitive Hashing

⚬ K-Means Based (IVF)

2

The Curse of Clustering

• Real world data often

follow a power-law

relationship

• Hotspots and sparse

regions in the embedding

space

3

Action

Comedy

Documentary

Musical

Independent

Unbalanced Clustering

• Overutilized clusters

• Higher latency

4

Action

Comedy

Documentary

Musical

Independent

Balanced Clustering

• The “curse”:

⚬ Similar vectors forced

to split

⚬ Irrelevant vectors

forced together

5

Action

Comedy

Documentary

Musical

Independent

BLISS: BaLanced Index for Scalable Search

High-level learning process:

1. Train model to predict bucket assignment

2. Redistribute vectors according to model

3. Repeat

Trained model provides probabilistic assignment of vectors to buckets

6

BLISS Initialization

• Goal: uniform bucket sizes

• Random initial assignment into

𝐵 buckets

7

BLISS Model Training

• Goal: train model to “score”

bucket given a vector

• MLP with a single hidden layer

• Data: 𝑥, ത𝑦 pairs

⚬ 𝑥: vector/query in dataset

⚬ ത𝑦: ground-truth 100 closest

vectors to 𝑥 (pre-computed)

• Cross-entropy loss over all

buckets

8

BLISS Re-partitioning

• Use trained model to get

“better” bucket assignments

• Re-assign each vector to least

occupied of top 𝐾 buckets

⚬ Incentivize load balancing

9

V1, V2

V5

BLISS Querying

10

BLISS Configurations

• 𝐾: Load balancing parameter

⚬ 2 ~ 10

• 𝑅: Number of (independent) repetitions

⚬ 1 ~ 4

• 𝐵: Number of buckets in system

⚬ 𝑂 𝑁

• 𝑚: How many buckets to probe

⚬ 5 ~ 20

• Training scheme

11

BLISS+

BLISS+ Reordering • Optimized for index size

⚬ Use only a single model

⚬ Reorder data and only

store offsets

• 137M memory for 1B dataset

⚬ 6000x smaller than HNSW

⚬ 1500x smaller than FAISS-

IVFFlat

⚬ 100x smaller than BLISS

12

Vector Bucket Position

V1 2 0

V2 1 1

V3 3 2

V4 2 3

V5 3 4

V6 1 5

Vector Bucket Position

V2 1 0

V6 1 1

V1 2 2

V4 2 3

V3 3 4

V5 3 5

Experiment Setup

• 1M, 100M, 1B scale datasets

• Use 1% of dataset for training data

• Hardware:

⚬ Server with 64 cores and 1.5 TB RAM (no GPU)

⚬ Only use 32 threads to batch queries

13

Experiments

• BLISS performs well

compared to baselines

• No data points for BLISS for

low latency regions

⚬ Presumably overhead in

running inference on MLP

• BLISS also has a smaller

index size

14

V1, V2

V5

Experiments

15

QPS Recall10@10 Index Size Construction

Time

BLISS 121 0.8443 15.5GB 1hr

BLISS+ 344 0.658 137MB 1.1hr

HNSW 909 0.8734 557GB 10hr

FAISS 243 0.8764 127GB >5 days

BIGANN TI: 1B image dataset (BLISS doesn’t work as well)

Future Work

• How well does BLISS generalize to different data / react to updates?

• How long does it take to (re-)train the model?

• More rigorous experiments/analysis for billion-scale datasets

• Is the choice of neural network architecture and training setup optimal?

16

Thank you!

Questions?

Experiments

18

QPS Recall10@10 Index Size Construction

Time

BLISS 110 0.568 15.5GB 1hr

BLISS+ 384 0.434 137MB 1.3hr

HNSW 15 0.566 826GB 16hr

FAISS 4 0.4919 194GB >5 days

Yandex TI: 1B text-to-image dataset (BLISS outperforms due to nature of dataset)

Appendix: How is the “Curse of Clustering” Addressed?

• Main idea: bucket assignments are probabilistic and replicated across 𝑅 independent trials

⚬ Functionally similar to assigning to multiple clusters

• Forced to split similar vectors

⚬ Lower chance of relevant clusters being lost with 𝑅 repetitions

• Forced to group irrelevant vectors

⚬ Irrelevant vectors are filtered out by the threshold filter and not considered in the final

candidate set

19

Appendix: Alternative Architectures?

• This ensemble-like approach using 𝑅 models improves robustness and parallelizability, and

helps with curse of clustering

• But the MLP may be too simple to effectively learn this (complex) vector to bucket association

20

Appendix: Modifications for XML

In XML, the labels are not vectors, so to perform re-partitioning, we need a

way to map a label to a bucket

1. For every label, we find all the vectors 𝑥 which have the label as a

ground truth label

2. We compute and sum up 𝑓(𝑥) for all such vectors 𝑥. This will give you

a 𝐵 dimensional vector that provides scores over buckets

3. Everything else is the same.

21

	Slide 1: BLISS: A Billion scale Index using Iterative Re-partitioning [KDD’22]
	Slide 2: Cluster-Based Indexes
	Slide 3: The Curse of Clustering
	Slide 4: Unbalanced Clustering
	Slide 5: Balanced Clustering
	Slide 6: BLISS: BaLanced Index for Scalable Search
	Slide 7: BLISS Initialization
	Slide 8: BLISS Model Training
	Slide 9: BLISS Re-partitioning
	Slide 10: BLISS Querying
	Slide 11: BLISS Configurations
	Slide 12: BLISS+
	Slide 13: Experiment Setup
	Slide 14: Experiments
	Slide 15: Experiments
	Slide 16: Future Work
	Slide 17: Thank you!
	Slide 18: Experiments
	Slide 19: Appendix: How is the “Curse of Clustering” Addressed?
	Slide 20: Appendix: Alternative Architectures?
	Slide 21: Appendix: Modifications for XML

